On Solving Sparse Algebraic Equations over Finite Fields II

Igor Semaev

Department of Informatics, University of Bergen, Norway
ACCT, 20.06.2008

Outline

- Motivation
- Sparse equation systems over finite fields
- Known approaches
- Gluing and Agreeing Procedures
- Solve with Gluing Algorithm
- Solve with Agreeing-Gluing Algorithms
- Asymptotical estimates
- Conclusions

Motivation

- One way function $x \rightarrow f(x)$
- Easy to compute and hard to invert
- Examples
I. $\quad x \rightarrow a^{x} \bmod p$

2. M - plain-text, K - key, $E_{K}(M)$ cipher-text in the AES:

$$
K \rightarrow E_{K}(M)
$$

- Still one-way

Motivation

- To Compute: Represent f in small number of small gates
- Egg.

$$
f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=F\left(g_{1}\left(x_{1}, x_{2}\right), g_{2}\left(x_{2}, x_{3}\right), g_{3}\left(x_{3}, x_{4}\right)\right)
$$

- To Invert: Given y solve $f(x)=y$ in x
- Introduce new variables to simplify equations
- Egg.

$$
f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=y \Leftrightarrow \begin{aligned}
& g_{1}\left(x_{1}, x_{2}\right)=y_{1} \\
& g_{2}\left(x_{2}, x_{3}\right)=y_{2} \\
& g_{3}\left(x_{3}, x_{4}\right)=y_{3} \\
& F\left(y_{1}, y_{2}, y_{3}\right)=y
\end{aligned}
$$

Formal Definitions

- X variable set of size n over F_{q}
- f_{i} polynomials in $X_{i} \subseteq X$
- Find all solutions in F_{q} to equations:

$$
f_{1}\left(X_{1}\right)=0, \ldots, f_{m}\left(X_{m}\right)=0
$$

- We study $\left|X_{i}\right| \leq l$ for a small parameter $l=3,4, \ldots$
- No other restrictions
- Brute force search complexity q^{n} trials
- GOAL: Fastest Way to Solve

Typical equations $\bmod 2$:

$$
\begin{gathered}
x_{1} x_{6}+x_{3} \equiv 0 \\
x_{2} x_{4}+x_{5}+1 \equiv 0 \\
x_{1} x_{2} x_{5}+x_{1}+x_{2} \equiv 0 \\
x_{3} x_{4}+x_{5}+1 \equiv 0 \\
x_{3} x_{6}+x_{3}+x_{5} \equiv 0 \\
x_{4} x_{5}+x_{1}+x_{4} \equiv 0
\end{gathered}
$$

Gröbner basis Algorithms

- Destroy sparseness
- Require huge memory even for relatively small problems
- Generally, only efficient(complexity $<q^{n}$) for quadratic and very overdefined systems ($\mathrm{m}>\mathrm{n}$)

Write equations as l-SAT formulas $(q=2)$

- One equation

$$
f\left(x_{1}, \ldots, x_{l}\right)=0 \quad \Leftrightarrow \quad F_{f}=\wedge_{f\left(a_{1}, \ldots, a_{l}\right)=1}\left(x_{1}^{\left(a_{1}\right)} \vee \ldots \vee x_{l}^{\left(a_{l}\right)}\right)=1
$$

where $x^{(1)}=\bar{x}$ and $x^{(0)}=x$

- The system is equivalent to $\wedge_{i} F_{f_{i}}=1$. An l-SAT problem
- Worst case bounds, survey in [Iwama, 04]:

$$
\begin{array}{|r|r|r|r|r|}
\hline l= & 3 & 4 & 5 & 6 \\
\hline \text { the worst case } & 1.324^{n} & 1.474^{n} & 1.569^{n} & 1.637^{n} \\
\hline
\end{array}
$$

- \Rightarrow Worst case bounds for Sparse equations

Another Representation of Equations

- First in [Zakrevskij-Vasilkova,oo], independently in [Raddum,04]
- $f_{i}\left(X_{i}\right)=0 \Leftrightarrow$ solutions V_{i} in variables $X_{i} \Leftrightarrow S_{i}=\left(X_{i}, V_{i}\right)$
- E.g.

$$
x_{1} x_{2}+x_{3} \equiv 0 \quad \bmod 2 \Leftrightarrow \begin{array}{ccc}
x_{1} & x_{2} & x_{3} \\
\hline 0 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 0 \\
1 & 1 & 1
\end{array}
$$

- Solve equations S_{1}, \ldots, S_{m} with:
- Gluing
- Pairwise Agreeing

Gluing Procedure

$$
\begin{array}{ccc}
x_{1} & x_{2} & x_{3} \\
\hline 0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 1 & 1
\end{array} \quad \circ \quad \begin{array}{cccc}
x_{1} & x_{2} & x_{4} \\
0 & 0 & 0 \\
1 & 0 & 1 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array} \begin{array}{cccc}
& \begin{array}{c}
x_{1} \\
0
\end{array} & x_{2} & x_{3} \\
\hline 0 & x_{4} \\
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1
\end{array}
$$

- Common variables $\left\{x_{1}, x_{2}\right\}$
- Glue vectors with the same sub-vector in $\left\{x_{1}, x_{2}\right\}$
- The number of resulting vectors may grow
- Appears in [Semaev, WCC'o7].

Gluing Algorithm

- input: Equations:

$$
S_{1}=\left(X_{1}, V_{1}\right), \ldots, S_{m}=\left(X_{m}, V_{m}\right) .
$$

- Compute $S_{1} \circ S_{2} \circ \ldots \circ S_{m}=\left(X(m), U_{m}\right)$
- output: Solutions U_{m}
- Intermediate $S_{1} \circ S_{2} \circ \ldots \circ S_{k}=\left(X(k), U_{k}\right)$ require large memory

Gluing Algorithm Example

Given 3 equations

	x_{1}	x_{2}
a_{1}	O	\circ
a_{2}	I	\circ
a_{3}	I	I

	x_{2}	x_{3}
b_{1}	○	○
b_{2}	I	○
b_{3}	I	I

	x_{1}	x_{3}
c_{1}	\circ	\circ
c_{2}	\circ	I

Compute two gluings:

One solution

Gluing1 Algorithm

- The same expected running time
- Requires polynomial memory
- Algorithm walks through a Search tree
- Easy to understand with Example

Gluing1 Algorithm Example

- Equations: $V_{1}=\left\{a_{1}, a_{2}, a_{3}\right\}, V_{2}=\left\{b_{1}, b_{2}, b_{3}\right\}$, and $V_{3}=\left\{c_{1}, c_{2}\right\}$

	x_{1}	x_{2}
a_{1}	○	○
a_{2}	I	○
a_{3}	I	I

	x_{2}	x_{3}
b_{1}	○	○
b_{2}	I	○
b_{3}	I	I

	x_{1}	x_{3}
c_{1}	\circ	\circ
c_{2}	\circ	I

- The search tree:

- The solution $a_{1} \circ b_{1} \circ c_{1}=\left(x_{1}, x_{2}, x_{3}\right)=(0,0,0)$

Agreeing Procedure

- Common variables $\left\{x_{1}, x_{2}\right\}$
- Projections on $\left\{x_{1}, x_{2}\right\}$:
- $00,01,11$ and $00,10,11$
- Remove vectors with projection not in the projections of another list
- Appears in [Zakrevskij-Vasilkova,oo] and [Raddum,04]

Agreeing-Gluing1 Algorithm

- Follow the Search tree as in Gluing1 and compute

$$
a \circ b \ldots \circ c
$$

a solution to $S_{1} \circ S_{2} \circ \ldots \circ S_{k}$

- If $a \circ b \ldots \circ c$ contradicts to at least one of

$$
S_{k+1}, \ldots, S_{m}
$$

Then remove every branch passing through a, b, \ldots, c.

- Lots of branches are cut
- Complexity abruptly falls
- A more general algorithm in [Raddum-Semaev,o6].

Agreeing-Gluing1 Algorithm Example

- Equations: $V_{1}=\left\{a_{1}, a_{2}, a_{3}\right\}, V_{2}=\left\{b_{1}, b_{2}, b_{3}\right\}$, and $V_{3}=\left\{c_{1}, c_{2}\right\}$

	x_{1}	x_{2}
a_{1}	O	O
a_{2}	I	O
a_{3}	I	I

	x_{2}	x_{3}
b_{1}	○	○
b_{2}	I	○
b_{3}	I	I

	x_{1}	x_{3}
c_{1}	\circ	\circ
c_{2}	\circ	I

- The search tree:

- The solution $a_{1} \circ b_{1} \circ c_{1}=\left(x_{1}, x_{2}, x_{3}\right)=(0,0,0)$

Probabilistic Model

- Agreeing-Gluing algorithms are deterministic
- Equiprobable instances distribution:
- For natural numbers m, n and $l_{1}, \ldots, l_{m} \leq l$
I. Independent equations $f_{i}\left(X_{i}\right)$

2. $X_{i} \quad$ uniformly random l_{i}-subsets of X
3. f_{i} uniformly random polynomials of degree $\leq q-1$ in each variable

- Running time is a random variable. Find expectation

Gluing Algorithm Asymptotic

- With Gluing

$$
S_{1} \circ S_{2} \circ \ldots \circ S_{k}=\left(X(k), U_{k}\right)
$$

- Gluing Algorithm Complexity is

$$
O\left(\sum_{k}\left|U_{k}\right|\right)=O\left(m \max _{k}\left|U_{k}\right|\right)
$$

- X_{1}, \ldots, X_{k} are fixed, then

$$
E_{f_{1}, \ldots, f_{k}}\left|U_{k}\right|=q^{|X(k)|-k}
$$

- Expected complexity is roughly

$$
\max _{k} \quad E_{X_{1}, \ldots, X_{k}}\left(q^{|X(k)|-k}\right)
$$

- Estimated in [Semaev, WCC'o7] with Random Allocations Theory.

Agreeing-Gluing Algorithm Asymptotic

- $S_{1} \circ S_{2} \circ \ldots \circ S_{k}=\left(X(k), U_{k}\right)$
- U_{k}^{\prime} solutions in U_{k} agreed to each of S_{k+1}, \ldots, S_{m}
- Algorithm's Complexity

$$
O\left(\sum_{k}\left|U_{k}^{\prime}\right|\right)=O\left(m \max _{k}\left|U_{k}^{\prime}\right|\right)
$$

- X_{1}, \ldots, X_{k} are fixed, then

$$
E_{f_{1}, \ldots, f_{k}}\left|U_{k}^{\prime}\right|=E_{f_{1}, \ldots, f_{k}}\left|U_{k}\right| \prod_{i=k+1}^{m}\left(1-\left(1-\frac{1}{q}\right)^{q^{\left|X_{i} \backslash X(k)\right|}}\right)
$$

- Expected complexity is roughly

$$
\max _{k} \quad E_{X_{1}, \ldots, X_{k}}\left(q^{|X(k)|-k} \prod_{i=k+1}^{m}\left(1-\left(1-\frac{1}{q}\right)^{q^{\left|X_{i}\right| X(k) \mid}}\right)\right.
$$

- Estimated in the Proceedings of ACCT'o8

Algorithms Running Time(q=2)

n Boolean equations in n variables, each equation depends on at most l variables

$l=$	3	4	5	6
the worst case	1.324^{n}	1.474^{n}	1.569^{n}	1.637^{n}
Gluing1, expectation,[WCCo7]	1.262^{n}	1.355^{n}	1.425^{n}	1.479^{n}
Agreeing-Gluing1, expectation[ACCTo8]	1.113^{n}	1.205^{n}	1.276^{n}	1.334^{n}

- Worst and average cases of the problem are excitingly different
- Why?
- Any Clause in l variables has $2^{l}-1$ satisfying assignments
- Average number of solutions to a random Equation in l variables is 2^{l-1}
- Average l-SAT problem is apparently harder

Conclusions

- Proven here expected complexity bounds are significantly lower than known worst case bounds
- At least theoretically new methods seem better than Gröbner Basis Algorithms and SAT solvers

