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Motivation

e One way function v — f(z)

e Fasy to compute and hard to invert

e Examples

1. T — a® mod p

2. M - plain-text,
K - key,
FEx (M) cipher-text in the AES:

K — Ex(M)

e Still one-way
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Motivation
e To Compute: Represent f in small number of small gates

o Eg.
f(l’h Lo, T3, 374) = F(gl(xla 96’2)7 92(5527 33’3)7 93(953, 1’4))

e To Invert: Given y solve f(z) = yinx

e Introduce new variables to simplify equations

o Eg.

91(371; 372)

_ Go(22, x3)
f(xla Lo, I3, 1'4) =Y ~ 93<x3, 1'4)

F(y1, v, ):

Y1
Y2
Y3
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Formal Definitions

e X variable set of size n over F
e f; polynomialsin X; C X

e Find all solutions in F}, to equations:
fl(Xl) — 07 boog fm(Xm) =

e We study | X;| <[ for a small parameter [ = 3,4, . ..
e No other restrictions
e Brute force search complexity ¢" trials

e GOAL: Fastest Way to Solve

5/22



Typical equations mod 2:
12T +x3 =0
ToXys + X5+ 1=0
T1T9T5 + X1 + 19 = 0
T3Zys + 25+ 1=0
T3Tg + T3 + T5 = 0

TyTs + 211 +24 =0
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Grobner basis Algorithms

e Destroy sparseness
e Require huge memory even for relatively small problems

e Generally, only efficient(complexity< ¢") for quadratic and very over-
defined systems (m>n)
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Write equations as [-SAT formulas(q = 2)

e One equation

fE, ..., x)=0 <& F;=Aana(@@Vv.. . va®) =1,

where 2!) = z and 20 =z
e The system is equivalent to A, [y, = 1. An [-SAT problem

e Worst case bounds, survey in [Iwama,o4]:

= 3 4 5 6
the worst case | 1.324™ | 1.474™ | 1.569™ | 1.637™ |

e = Worst case bounds for Sparse equations
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Another Representation of Equations

e First in [Zakrevskij-Vasilkova,o0], independently in [Raddum,o4]
e f:(X;) = 0 < solutions Vj in variables X; < S; = (X;, V)
o Eg.

X1 T2 T3
0 0 O
r1To+23=0 mod2«< 0 1 0
1 0 0
1 1 1
e Solve equations 51, . .., S, with:
e Gluing

e Pairwise Agreeing
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Gluing Procedure

X1 9 Tj 1 L9 T4 X1 9 T3 T4
0 0 O 0 0 O 0 0 0 0
0 0 1 o I 01 =00 10
0 1 0 I 1 0 I 1 1 0
I 1 1 I 1 1 I 1 1 1

e Common variables {x, 75}
e Glue vectors with the same sub-vector in {x, 25}
e The number of resulting vectors may grow

e Appears in [Semaev, WCC’o7].
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Gluing Algorithm
e input: Equations:
Si=(X1,Vi), ..., Sm = (Xm, Vin).

e Compute S; 0 Sy0...0.5, = (X(m),U,)
e output: Solutions U,

e Intermediate S; 0 Sy 0...0 S, = (X(k), Uy) require large memory
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Gluing Algorithm Example

Given 3 equations

1 Tg Ty T3 Iy T3
a,| o o O O ci| 0O O
ay | I O I o'’ Cp| O 1
as| 1 1 I I
Compute two gluings:
Ty Ty T T Ty T
Ty Ty Ty T 1 T2 T3 1 T T3
O O O O O O Ty T3
O O O O
o = I O O I O O o0 O O
I O I O
I I O I I O o I
I I I I
S S I I I

One solution

L1

)

X3

©)

0)

©)
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Gluing1 Algorithm

e The same expected running time
e Requires polynomial memory
e Algorithm walks through a Search tree

e Easy to understand with Example
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Gluing1 Algorithm Example

e Equations: V| =

{&1, o, CL3} ‘/2

1 T9
a;| © O
Ao | I 0]
Qs | I I

e The solution a; 0 by o ¢; =

Ty Ts
bl o o
b2 I 0]
bs | 1 1

(xla Lo, 1'3) —

{bh b27 b3} and ‘/3

{c1, co}

Ty I3

ci|l o o

’ Cy| O I
(0,0,0)
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Agreeing Procedure

X1 T2 T3 T1 To T4
0 0 1 0 0 0
0 0 0 I O I
o I O I 1 0
I 1 1 1 1 1

e Common variables {z, x,}

e Projections on {xy, T }:

e 00,01, 11 and 00, 10, 11

e Remove vectors with projection not in the projections of another list

e Appears in [Zakrevskij-Vasilkova,oo] and [Raddum,o4]
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Agreeing-Gluingl Algorithm
e Follow the Search tree as in Gluingl and compute
aob...oc

a solutionto S;0.550...0 5,

elIfaob...oc contradicts to at least one of
Sk:—i-la Tt S’m:

Then remove every branch passing through a, 0, . . ., c.

e Lots of branches are cut

e Complexity abruptly falls

e A more general algorithm in [Raddum-Semaev,00].

16/22



Agreeing-Gluing1 Algorithm Example

e Equations: V| = {ay, as, as}, Vo = {by, by, b3}, and V3 = {cy, o}

Ty To Ly X3 1 I3
a,| o o bl o o ci| o o
a,| 1 o'’ bp | 1 0o’ Cy| O 1
as| 1 I bs| 1 I

e The search tree:
2
a,
b,

e The solution aj o bl o Cl = (l'l, Lo, 1'3) = (O, O, O)
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Probabilistic Model

e Agreeing-Gluing algorithms are deterministic
e Equiprobable instances distribution:
e For natural numbers m, nand [y, ...,[,, <

1. Independent equations f;(X;)
2. X; uniformly random [;-subsets of X

3. f; uniformly random polynomials of degree < ¢ — 1 in each vari-
able

e Running time is a random variable. Find expectation
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Gluing Algorithm Asymptotic

e With Gluing
S1080...08, = (X(k),Uy)

e Gluing Algorithm Complexity is

O IUil) = O(mmax|Uy))

k

o X,,..., X, are fixed, then

m]?X Ex, . Xk(q’X(k)‘_k)

e Estimated in [Semaev, WCC’o7] with Random Allocations Theory.
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Agreeing-Gluing Algorithm Asymptotic
e Sj050...085, = (X(k),Uy)

e U, solutions in U}, agreed to each of Sy.1,..., Sy

e Algorithm’s Complexity

O(3" [U3]) = O(mmax U]

e Xi,..., X, are fixed, then

~ L Jxaxe)
Ef1 ----- fk‘U/:Z‘ :Ef1 ----- fk‘Uk‘ H (1_(1__)q )
i=k+1 q
e Expected complexity is roughly
e 1. pxax
max By, x(¢*"* H (1= (1=2)@ N
" i=k+1 q

e Estimated in the Proceedings of ACCT 08
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Algorithms Running Time(g=2)

n Boolean equations in n variables, each equation depends on at most [

variables
[ = 3 4 5 6
the worst case | 1.324" | 1.474™ | 1.569" | 1.637"
Gluing]l, expectation,[WCCo7] | 1.262" | 1.355" | 1.425" | 1.479" |
Agreeing-Gluingl, expectation[ACCTod8] | 1.113" | 1.205" | 1.276™ | 1.334"

e Worst and average cases of the problem are excitingly different

° VVhy?

e Any Clause in [ variables has 2 — 1 satisfying assignments

e Average number of solutions to a random Equation in [ variables is 2/~!

e Average [-SAT problem is apparently harder
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Conclusions

e Proven here expected complexity bounds are significantly lower than
known worst case bounds

e At least theoretically new methods seem better than Grobner Basis Al-
gorithms and SAT solvers
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