
1/22

On Solving Sparse Algebraic Equations
over Finite Fields II

Igor Semaev

Department of Informatics, University of Bergen, Norway

ACCT, 20.06.2008

2/22

Outline

• Motivation

• Sparse equation systems over �nite �elds

• Known approaches

• Gluing and Agreeing Procedures

• Solve with Gluing Algorithm

• Solve with Agreeing-Gluing Algorithms

• Asymptotical estimates

• Conclusions

3/22

Motivation

• One way function x → f (x)

• Easy to compute and hard to invert

• Examples

1. x → ax mod p

2. M - plain-text,
K - key,
EK(M) cipher-text in the AES:

K → EK(M)

• Still one-way

4/22

Motivation

• To Compute: Represent f in small number of small gates

• E.g.
f (x1, x2, x3, x4) = F (g1(x1, x2), g2(x2, x3), g3(x3, x4))

• To Invert: Given y solve f (x) = y in x

• Introduce new variables to simplify equations

• E.g.

f (x1, x2, x3, x4) = y ⇔
g1(x1, x2) = y1
g2(x2, x3) = y2
g3(x3, x4) = y3

F (y1, y2, y3) = y

5/22

Formal De�nitions

• X variable set of size n over Fq

• fi polynomials in Xi ⊆ X

• Find all solutions in Fq to equations:

f1(X1) = 0, . . . , fm(Xm) = 0

• We study |Xi| ≤ l for a small parameter l = 3, 4, . . .

• No other restrictions
• Brute force search complexity qn trials

• GOAL: Fastest Way to Solve

6/22

Typical equations mod 2:

x1x6 + x3 ≡ 0

x2x4 + x5 + 1 ≡ 0

x1x2x5 + x1 + x2 ≡ 0

x3x4 + x5 + 1 ≡ 0

x3x6 + x3 + x5 ≡ 0

x4x5 + x1 + x4 ≡ 0

7/22

Gröbner basis Algorithms

• Destroy sparseness
• Require huge memory even for relatively small problems

• Generally, only e�cient(complexity< qn) for quadratic and very over-
de�ned systems (m>n)

8/22

Write equations as l-SAT formulas(q = 2)

• One equation

f (x1, . . . , xl) = 0 ⇔ Ff = ∧f(a1,...,al)=1(x
(a1)
1 ∨ . . . ∨ x

(al)
l) = 1,

where x(1) = x̄ and x(0) = x

• The system is equivalent to ∧iFfi
= 1. An l-SAT problem

• Worst case bounds, survey in [Iwama,04]:

l = 3 4 5 6
the worst case 1.324n 1.474n 1.569n 1.637n .

•⇒Worst case bounds for Sparse equations

9/22

Another Representation of Equations

• First in [Zakrevskij-Vasilkova,00], independently in [Raddum,04]

• fi(Xi) = 0⇔ solutions Vi in variables Xi ⇔ Si = (Xi, Vi)

• E.g.

x1x2 + x3 ≡ 0 mod 2 ⇔

x1 x2 x3

0 0 0
0 1 0
1 0 0
1 1 1

• Solve equations S1, . . . , Sm with:

• Gluing
• Pairwise Agreeing

10/22

Gluing Procedure

x1 x2 x3

0 0 0
0 0 1
0 1 0
1 1 1

◦

x1 x2 x4

0 0 0
1 0 1
1 1 0
1 1 1

=

x1 x2 x3 x4

0 0 0 0
0 0 1 0
1 1 1 0
1 1 1 1

• Common variables {x1, x2}
• Glue vectors with the same sub-vector in {x1, x2}
• The number of resulting vectors may grow

• Appears in [Semaev, WCC'07].

11/22

Gluing Algorithm

• input: Equations:

S1 = (X1, V1), . . . , Sm = (Xm, Vm).

• Compute S1 ◦ S2 ◦ . . . ◦ Sm = (X(m), Um)

• output: Solutions Um

• Intermediate S1 ◦ S2 ◦ . . . ◦ Sk = (X(k), Uk) require large memory

12/22

Gluing Algorithm Example

Given 3 equations

x1 x2

a1 0 0
a2 1 0
a3 1 1

,

x2 x3

b1 0 0
b2 1 0
b3 1 1

,

x1 x3

c1 0 0
c2 0 1

,

Compute two gluings:

x1 x2

0 0
1 0
1 1

◦
x2 x3

0 0
1 0
1 1

=

x1 x2 x3

0 0 0
1 0 0
1 1 0
1 1 1

,

x1 x2 x3

0 0 0
1 0 0
1 1 0
1 1 1

◦
x1 x3

0 0
0 1

=
x1 x2 x3

0 0 0

One solution

13/22

Gluing1 Algorithm

• The same expected running time

• Requires polynomial memory

• Algorithm walks through a Search tree

• Easy to understand with Example

14/22

Gluing1 Algorithm Example

• Equations: V1 = {a1, a2, a3}, V2 = {b1, b2, b3}, and V3 = {c1, c2}

x1 x2

a1 0 0
a2 1 0
a3 1 1

,

x2 x3

b1 0 0
b2 1 0
b3 1 1

,

x1 x3

c1 0 0
c2 0 1

• The search tree:

∅

a1
a2 a3

b1

c1

b1 b2 b3

• The solution a1 ◦ b1 ◦ c1 = (x1, x2, x3) = (0, 0, 0)

15/22

Agreeing Procedure

x1 x2 x3

0 0 1
0 0 0
0 1 0
1 1 1

x1 x2 x4

0 0 0
1 0 1
1 1 0
1 1 1

• Common variables {x1, x2}
• Projections on {x1, x2}:
• 00, 01, 11 and 00, 10, 11

• Remove vectors with projection not in the projections of another list

• Appears in [Zakrevskij-Vasilkova,00] and [Raddum,04]

16/22

Agreeing-Gluing1 Algorithm

• Follow the Search tree as in Gluing1 and compute

a ◦ b . . . ◦ c

a solution to S1 ◦ S2 ◦ . . . ◦ Sk

• If a ◦ b . . . ◦ c contradicts to at least one of

Sk+1, . . . , Sm,

Then remove every branch passing through a, b, . . . , c.

• Lots of branches are cut
• Complexity abruptly falls

• A more general algorithm in [Raddum-Semaev,06].

17/22

Agreeing-Gluing1 Algorithm Example

• Equations: V1 = {a1, a2, a3}, V2 = {b1, b2, b3}, and V3 = {c1, c2}

x1 x2

a1 0 0
a2 1 0
a3 1 1

,

x2 x3

b1 0 0
b2 1 0
b3 1 1

,

x1 x3

c1 0 0
c2 0 1

• The search tree:

∅

a1

b1

c1

• The solution a1 ◦ b1 ◦ c1 = (x1, x2, x3) = (0, 0, 0)

18/22

Probabilistic Model

• Agreeing-Gluing algorithms are deterministic

• Equiprobable instances distribution:

• For natural numbers m, n and l1, . . . , lm ≤ l

1. Independent equations fi(Xi)

2. Xi uniformly random li-subsets of X

3. fi uniformly random polynomials of degree ≤ q − 1 in each vari-
able

• Running time is a random variable. Find expectation

19/22

Gluing Algorithm Asymptotic

• With Gluing
S1 ◦ S2 ◦ . . . ◦ Sk = (X(k), Uk)

.

• Gluing Algorithm Complexity is

O(
∑

k

|Uk|) = O(m max
k
|Uk|)

• X1, . . . , Xk are �xed, then

Ef1,...,fk
|Uk| = q|X(k)|−k

.

• Expected complexity is roughly

max
k

EX1,...,Xk
(q|X(k)|−k)

• Estimated in [Semaev, WCC'07] with Random Allocations Theory.

20/22

Agreeing-Gluing Algorithm Asymptotic

• S1 ◦ S2 ◦ . . . ◦ Sk = (X(k), Uk)

• U ′
k solutions in Uk agreed to each of Sk+1, . . . , Sm

• Algorithm's Complexity

O(
∑

k

|U ′
k|) = O(m max

k
|U ′

k|)

• X1, . . . , Xk are �xed, then

Ef1,...,fk
|U ′

k| = Ef1,...,fk
|Uk|

m∏
i=k+1

(1− (1− 1

q
)q|Xi\X(k)|

)

• Expected complexity is roughly

max
k

EX1,...,Xk
(q|X(k)|−k

m∏
i=k+1

(1− (1− 1

q
)q|Xi\X(k)|

)

• Estimated in the Proceedings of ACCT'08

21/22

Algorithms Running Time(q=2)

n Boolean equations in n variables, each equation depends on at most l
variables

l = 3 4 5 6
the worst case 1.324n 1.474n 1.569n 1.637n

Gluing1, expectation,[WCC07] 1.262n 1.355n 1.425n 1.479n

Agreeing-Gluing1, expectation[ACCT08] 1.113n 1.205n 1.276n 1.334n

.

• Worst and average cases of the problem are excitingly di�erent

• Why?

• Any Clause in l variables has 2l − 1 satisfying assignments

• Average number of solutions to a random Equation in l variables is 2l−1

• Average l-SAT problem is apparently harder

22/22

Conclusions

• Proven here expected complexity bounds are signi�cantly lower than
known worst case bounds

• At least theoretically new methods seem better than Gröbner Basis Al-
gorithms and SAT solvers

